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A discrete model exhibiting conserved dynamics with nonconserved noise involving particles of different
nature, termed as linear and nonlinear, is proposed here. The morphology of the surface has been studied with
different abundances of these particles. The saturated surface, slowly evolved from a lower contribution of
nonlinear particles to a higher contribution of nonlinear particles, splits into four distinct scaling regimes with
three crossover lengths. Each regime is characterized by different scaling property. It is shown that when the
contribution of the nonlinear particles crosses a critical value, the surface morphology shows a linear-nonlinear
“phase transition.” The roughness exponent in a nonlinear regime is well compared with that of the continuum
nonlinear equation in a molecular beam epitaxy �MBE� class as well as a MBE motivated discrete model.
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I. INTRODUCTION

The study of the growth of rough surfaces and interfaces
plays a major role in different phenomena of scientific inter-
est and practical importance. In the last two decades, consid-
erable progress has been achieved in the qualitative and
quantitative study of kinetic roughening of rough surfaces
and interfaces �1,2�. Such nonequilibrium rough surfaces and
interfaces do appear in various physical, chemical, and bio-
logical systems. Examples include the growth of thin film by
molecular beam epitaxy �MBE� �3,4�, snowfall on a slanted
glass window �5�, piling of sand on a smooth surface �6�,
propagation of a fire front through a sheet of paper �7�, fluid
flow through porous media �8–10�, and bacterial colony
growth �11�.

The scaling behavior of the growing interfaces can be
studied through discrete models or by continuum equations
�4�. Discrete models are defined by a set of deposition rules
for the temporal and spatial evolution of the growing sur-
faces. The morphology of the growing surface is studied
through its scaling property, defined by the Family-Vicsek
phenomenological scaling law �12�.

Another way to study the scaling behavior of a rough
surface is through the stochastic growth equations �13�,
based on the generalized Langevin equation of the form

�h�x�,t�
�t

= G�h�x�,t�� + ��x�,t� , �1�

where h�x� , t� is the single-valued surface height function of
the spatial coordinates x� and time t, G is the deterministic
growth term, and � is the noise. For linear growth, replacing
the kernel term G�h�x� , t�� of equation �1� by ��2h, one ob-
tains the Edward-Wilkinson �EW� equation �14,15� and for
G�h�x� , t��=��2h+ �

2 ��h�2, the equation reduces to the
Kardar-Parisi-Zhang nonlinear stochastic growth equation
�16� as well.

The growth models involving the smallest possible par-
ticle size with the same or different kinds of growth mecha-

nism have drawn much attention in literature �1,17–19�. Two
different kinds of growth mechanisms are involved in several
competitive growth models, such as �i� random deposition
�RD� and random depositions with surface relaxation
�RDSR� �20�, �ii� ballistic deposition �BD� and RD �21�, and
�iii� Eden model �ED� and unstable Eden model �UED� �22�.
Different kinds of particles are deposited with different prob-
abilities. These competitive growth models show a scaling
behavior depending upon the kind of particles which domi-
nate over the others. All these models involve only two kinds
of particles. Another model following a BD scheme involv-
ing two kinds of particles considered as “sticky” and “slid-
ing” has also been reported �23,24�.

Two nonequilibrium discrete solid on solid �SOS� models
motivated by MBE surface growth were proposed by Wolf
and Villian �25� and Das Sarma and Tamborenea �DT� �26�.
These two models contain the essential property of surface
relaxation in such a way that the particles diffuse to keep the
number of their nearest neighbors maximum.

Motivated by all these discrete models, here we introduce
a simple but interesting discrete model in terms of particle
size, with different abundances. The basic diffusion mecha-
nism of the RDSR model is kept intact. With the change of
the size of the particles, the nonlinearity in the system is
controlled. Here, the particles are restricted in three sizes
deposited with three different probabilities. The scaling be-
havior of the generated complex surface can be expressed by
a set of nontrivial characteristic exponents. The surface is
shown to possess more than one fractal dimension. In par-
ticular, we point out clearly the role played by the particles,
with different sizes in shaping the multifractal behavior of
the surface.

The plan of the paper is as follows. In the next section we
will describe the model and the relevant scaling properties to
characterize the surface. In Sec. III, the numerical results
corresponding to the scaling behavior of the surface are pre-
sented. We give a summary of our results and conclusions in
Sec. IV.

II. DESCRIPTION OF THE MODEL AND DYNAMIC
SCALING

The RDSR model with unique smallest possible particle
size can be described as the diffusion of a particle along the*djphy@caluniv.ac.in
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surface up to a finite distance, after being deposited on a
randomly chosen site on the surface. In other words, raining
from the top in a straight line trajectory, the particles finally
stick to the substrate according to the lower height distribu-
tion of the nearest neighbor columns �27� with a unity height
increment ���h�=1�. This mechanism can be effectively gen-
eralized by choosing the particle size not to be unique. Keep-
ing this mechanism the same, we have modified the size of
the particles in �1+1� dimension.

We have taken a lattice of size L on which particles are
deposited. The lattice can be thought of as a 1�L matrix
initially. Now the smallest possible particle that can be de-
posited will be a 1�1 matrix. Besides this, we have intro-
duced two other types of particles with sizes 1�2 and 2
�1. The rough surface is formed due to the RDSR aggrega-
tion mechanism followed by the particles of sizes 1�2, 2
�1, and 1�1 with the deposition probabilities as p, q, and
�1− �p+q��, respectively.

The 2�1 particle may be thought as an attachment of two
1�1 particles up and down. If the 1�1 particle is repre-
sented as �, then the 2�1 particle should look like

≡ .

. This RDSR growth profile using the particle 2�1 is same
as that of the particle 1�1 �27�, except the height increment
of the site on which the particle finally sticks is two units
���h�=2� instead of one.

Before discussion about the deposition of 1�2 particles
we would like to define a term “stable position” correspond-
ing to each such particle. If the 1�2 particle is thought of as
an integration of two 1�1 particles side by side like

≡ ,

then stable position refers to a condition when at least two
points from each of the two 1�1 particles touch other col-
umns of the substrate lattice separately. In this circumstance,
the selection of one 1�1 particle among the two 1�1 par-
ticles which build the 1�2 particle by the substrate lattice is
random. This means the occurrence of each 1�1 particle is
equally likely. The aggregation process of 1�2 particles can
be described as follows—one of the two 1�1 particles of
the 1�2 particle chooses a random site of the substrate lat-
tice and then it �1�2 particle� searches for the lower height
nearest neighbor columns with a stable position. The process
is repeated until the 1�2 particle finds the stable position.
For more clarification, one possible critical situation with
two different equally probable cases �case �I� and case �II�� is
demonstrated in Fig. 1. Here, the site A on the substrate is
chosen randomly by a 1�2 particle constructed by two 1
�1 particles, designated as 1 and 2 for distinction. This cri-
teria forces the surface diffusion current to be inclination
dependent. The lateral growth property due to the presence
of 1�2 particles in the present model also breaks the up-
down symmetry. So, nonlinearity due to the local slope ��h�
fluctuation should be included in the continuum description
of this discrete model. It can thus be inferred that the surface

formed by the significant contribution of the 1�2 particles
will show more nonlinear scaling properties. Besides this,
the shape of the 1�2 particles implies that the aggregation
of such particles create “closed voids,” avoiding possible
overhangs. In this sense, 1�2 particles are termed as “non-
linear” ones.

The relaxation criteria has been introduced in this model
in the following way. In view of the smallest particle �1
�1�, each particle is allowed to diffuse along the maximum
number of nearest neighbors avoiding any irreversible stick-
ing possibility. The diffusion of the 1�2 particle ensures
that at least one of the two constituent 1�1 particles should
get at least two nearest neighbors. The basic RDSR diffusion
rules confirm that for a sufficient large time, the small slope
approximation ��h��1 is valid throughout the surface.

A typical deposition process with simultaneous involve-
ment of the 1�2, 2�1, and 1�1 particles is shown in Fig.
2. The rough surface formed due to the simultaneous depo-
sition of these three different types of particles with prob-
abilities 0.5, 0.2, and 0.3 is shown in Fig. 3.

The development of the resulting rough surface can be
well interpreted with the dynamic scaling concept, expressed
as the space-time evolution of the surface width w�t ,L� fol-
lowing the Family-Vicsek scaling ansatz �12� as follows:

w�t,L� = ��h2�x,t�� − �h�x,t��2�1/2 � L�f	 t

Lz
 , �2�

where � is the roughness exponent, z=� /	 �	 is the growth
exponent� and f�u�, the scaling function, behaves as f�u�
�u	�u�1�, f�u��const �u
1� �1�.

A A

1 2 1 2

CASE (I) CASE (II)

FIG. 1. Case �I� denotes the situation when 1, a 1�1 block of a
1�2 particle, is chosen by a random site A and case �II� is the
situation when the other 1�1 block �marked as 2� of the 1�2
particle is chosen by the random site A.

Randomly deposited particles

Particles just deposited but yet to be relaxed.

Particles already relaxed before new deposition.

Particles relaxed after deposition.

FIG. 2. The simultaneous deposition scheme of 1�1, 1�2, and
2�1 types of particles according to the RDSR rule.
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The small and long wavelength fluctuations of the surface
evolved in our present model can be better understood from
the “multifractal” scaling of the rough surface. The concept
of multifractality for self-affine surfaces provides us with
deep insight into the complex nature of distributions and
geometry �28�. In this context, it has been suggested �29� that
for a class of surfaces, the �th-order height-height correlation
functions should be studied which, for fixed time t in �1
+1� dimensions, are expected to exhibit the following scal-
ing relation:

c��l,t� = ���h�x,t� − h�x + l,t����l�1/� � l��, �3�

where �� is an exponent changing with �. � �l means the
average over different windows of length l along the surface.

In our work we have taken a �1+1�-dimensional system
having fixed size L=1000 with periodic boundary conditions
and observed up to a time t=105 monolayers of depositions.
Results are averaged over 10 independent runs.

III. RESULTS AND DISCUSSION

The temporal evolution of kinetic roughening of the sur-
face with p=0.2 and q=0.2 �at different length scales� is
demonstrated first. Initially after t=100 monolayers of depo-
sition, the log-log plot of c��l� with length l for various val-
ues of � is shown in Fig. 4.

It is seen from Fig. 4 that the height-height correlation is
continued up to a length scale ls� t	/� with slow
�-dependent slope ��, corresponding to each c��l� �shown in
the inset�. The uncertainty of �� values due to the fitting of
the function l�� with c��l , t�, are represented by error bars in
the inset plot of �� vs �. Beyond ls, c��l� gets saturated,
resulting in horizontal parallel lines. This observation clearly
signifies that a weak mutifractal scaling regime exists up to
ls. No other length scale emerges except ls until now.

Figure 5 presents the system in deep saturation after t
�104 monolayers of deposition. An important event is seen

to occur; at this juncture a crossover length l� emerges, be-
low which a weak multifractal regime exists with different
�� exponents �shown in the inset in Fig. 5�.

A characteristic length scale ls� t	/� for a kinetic rough-
ening process remains in marking the saturation of a system
of size L; however, a new length scale l� is required for
distinguishing the multifractal and unifractal regimes. For l
� ls, no correlations exist due to the finite size of the system,
resulting in saturation of the system. Therefore, the scaling
behavior of the complex surface can be written mathemati-
cally as

c��l� � l�� ∀ � �for l 
 l�� , �4�

c��l� � l� ∀ � �for l� 
 l 
 ls� . �5�

A rare event dominated growth process having a power law
distribution of noise amplitudes �with � as the decay expo-
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FIG. 3. The rough interface formed by the simultaneous depo-
sition of the particles 1�2, 2�1, and 1�1, with the probabilities
0.5, 0.2, and 0.3, respectively. Here, the surface is obtained by the
successive deposition of four sets of 25 000 particles, which are
shown by different color shading.
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FIG. 4. �Color online� The �th-order correlation functions c��l�
of the system having p=0.2, q=0.2 after t=100 monolayers of
deposition. Inset: A variation of �� with � is shown by the error
bars.

0

1

2

3

4

5

0 1 2 3 4 5 6 7

ln
[c

γ(
l)

]

ln(l)

lx

γ=1
γ=2
γ=3
γ=4
γ=5
γ=6

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7

αγ

γ

0 < l < lx

FIG. 5. �Color online� The �th-order correlation functions c��l�
of the system having p=0.2, q=0.2 after t�104 monolayers of
deposition. Inset: The slope of c��l� for different � is plotted.

MULTIFRACTAL BEHAVIOR OF THE SURFACES EVOLVED… PHYSICAL REVIEW E 77, 061604 �2008�

061604-3



nent like P�����−�1+�� for ��1; P���=0 otherwise� shows
strong multifractal behavior below a characteristic length
scale depending upon the system size. It was shown that ��
varies as 0.2
��
0.75 when � varies from 1 to 6 �28�. In
comparison, the variation of �� in the present model is be-
tween 0.5
��
0.7 when � lies between 1
�
6, and im-
plies a weak multifractal in nature. In spite of this similarity,
the situation is different from that of a rare event controlled
growth process �28�. The major difference is that the cross-
over length l� in the present model is independent of system
size L �not shown� and also p �see Fig. 9�. The present mul-
tifractal behavior below the characteristic length scale l� is
best explained by the “intrinsic width” concept �30�. In gen-
eral, the intrinsic width characterizes the internal structure of
the surface and is seen to be independent of system size.
Most probably, the intrinsic width originates from the voids,
overhangs, and high steps present in the system. Krug �31�
shows in a variant of the DT scheme that the nearest neigh-
bor height-height correlation function has a time dependent
nature as c��1, t�����h�x , t�−h�x+1, t����1�1/�� t��. This time
dependent nature of c��1, t� is responsible for time dependent
intrinsic width, which gives rise to this multifractal behavior.

The most relevant question to the present model is that of
how the morphology of the surface is changing with p and q,
a measure of nonlinearity in the system at the saturation
limit.

To observe the effect of only 2�1 particles on the scaling
properties of the rough surface below l�, we fix p=0.0, i.e.,
1�2 particles are not involved in this process. Figure 6
shows the effect of q as the system proceeds from q=0.0 to
q=0.9. It shows that in spite of the large change in q, the
scaling property of the rough surface remains almost identi-
cal to that of the EW class with roughness exponent �2
�0.5 �27�. No l� appears here; the overall surface is
uniaffine with ���0.5. It implies that, though the surface
morphology evolves from �p=0.0, q=0.0� to �p=0.0, q
=0.9�, yet it remains in the EW class. It may be noted that
the EW universality class is the characteristic of the surface
generated only for p=0.0, q=0.0. The reason behind the
uniformity of the evolution of the surfaces as �p=0.0, q
=0.0�→ �p=0.0, q=0.9� is that the basic relaxation belongs
to the RDSR type with no inclination dependent surface dif-
fusion current.

More interesting features emerge when the saturated sur-
face �at around t�104� travels through different values of p,
i.e., 1�2 particles are playing an increasingly significant and
dominant role in shaping the morphology of the surface. An-
other system dependent characteristic length scale appears
when p crosses a limiting value pc. In this situation, the
system seems to possess three different length scales l�1, l�2,
and ls. A complete description of these three length scales for
the system L=1000, p=1.0, q=0.0 with the power law fit-
ting are shown in Fig. 7. Two clear multifractal regimes, one
is strong and the other weak, are noticed in the above figure.
The slope variations of c� with � in two different regimes
separated by l�1 and l�2 is shown in the inset. Beyond l�2
the surface is “uniaffine” with the roughness exponent �
=0.94�0.01. This value is in good agreement with two dis-
crete models; �i� a simple variant of the DT model �32� hav-
ing roughness exponent �=1.05�0.10 and �ii� conserved
restricted solid on solid model �33� in �1+1� dimensions,
having �=0.94�0.02. Moreover, the dynamic renormaliza-
tion group predicts �=1.0 from the lowest-order nonlinear
continuum MBE model exhibiting conserved dynamics with
nonconserved noise as prescribed by Lai–Das Sarma �32� as
follows:

�h

�t
= − K�4h + �1�

2��h�2 + ��x�,t� . �6�

The similarity of the scaling behavior between the present
model and that of Lai–Das Sarma �32� is because of the
underlying fact that both the models have surface relaxation
toward smaller height and large numbered nearest neighbor
sites.

Above ls no correlation exists. The birth of new crossover
length l�2 is significant because it bridges the gap between
the multiaffine nature of the surface to the uniaffine nature. It
is interesting to see how the surface evolves from weak mul-
tiaffine to strong multiaffine below the crossover length l�1.
In Fig. 8, �� is plotted against � below l�1 as the surface is
grown up with different deposition probabilities of 1�2 par-
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FIG. 6. �Color online� The exponent �� vs � below l� for the
systems �p=0.0, q=0.0� and �p=0.0, q=0.9� after t�104 mono-
layers of deposition.
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ticles. A clear signature of abrupt change in the �� values is
noticed as the system crosses the limit p=0.3, and the sur-
face becomes strong multiaffine. Besides the turbulent nature
�31� of the surface beyond p=0.3, it is clearly seen that �2
�0.5 for all p. It indicates that the linear RDSR scaling
feature still exists below this length scale l�1.

The formation of a new crossover characteristic length
scale l�2 shows a change in the scaling nature of the surface.
It plays a crucial role in linking the multiaffine linear surface
with the uniaffine nonlinear surface as discussed earlier.
Naturally, the evolution of l�2 will give a critical insight into
the scaling behavior of the surface. In Fig. 9, l�1 and l�2 are
plotted against p. It is clear from the figure that beyond p
=0.3, the new crossover length l�2 emerges creating a non-
linear regime. As the nonlinear particles �the 1�2 particle,
designated as nonlinear because of the fact that this particle
is solely responsible for introducing nonlinearity into the
system� are introduced into the system, they face competition
with the linear particles �the 1�1� to control the surface
morphology. For 0.3
 p
0.4 there is a win of nonlinear
particles over the linear ones beyond l�2. Also, nonlinear
particles play a definite role below l�1, making the surface
more turbulent in nature without nonlinearity. The situation
around 0.3
 p
0.4 may be thought of as a linear-nonlinear
phase transition beyond a system independent characteristic
length scale l�1, such that p as the order parameter and l�2 as
the observable. To observe the phase transition the critical
value of p should remain within 0.3
 pc
0.4.

IV. CONCLUSIONS

A discrete model exhibiting conserved dynamics with
nonconserved noise involving particles of different sizes is

introduced here. Two types of particles, linear and nonlinear,
with different probability of deposition are taking part in the
growth process. As the surface evolves gradually with time
involving a major contribution from nonlinear particles,
three distinct crossover lengths separate the overall surface
into four scaling regimes. The lower regime shows a turbu-
lent multifractal behavior. Next to that, a mixed nonlinear
weak mutifractal regime occurs, which bridges the turbulent
regime to a nonlinear unifractal regime. Beyond the unifrac-
tal regime, the usual saturation of the surface takes place.
With the slow rate of increase in the involvement of nonlin-
ear particles, the scaling properties of the saturated rough
surface shows a linear-nonlinear phase transition beyond the
mixed regime. Qualitatively, the phase transition is observed
when the nonlinear particle has the deposition probability
more than 0.3 but less than 0.4. The uniaffine surface, which
is nonlinear in nature, satisfies the roughness exponent close
to that predicted from the nonlinear MBE continuum equa-
tion.
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